Enhanced Radiation Therapy of Gold Nanoparticles in Liver Cancer

نویسندگان

  • Meili Guo
  • Yuanming Sun
  • Xiao-Dong Zhang
چکیده

Gold nanoparticles (GNPs) were widely used in X-ray imaging and radiation therapy due to strong photoelectric effects and secondary electrons under high energy irradiation. As liver cancer is one of the most common forms of cancer, the use of GNPs could enhance liver cancer radiotherapy. We synthesized polyethylene glycol (PEG)-coated GNPs of two different sizes by chemical reduction reaction. Blood stability, cellular uptake, cytotoxicity and radiation therapy were investigated. A 3–5 nm red shift of SPR caused by interactions between PEG-coated GNPs and plasma indicated their good stability. Cellular uptake assay showed that PEG-coated GNPs would enhance an appreciable uptake. GNPs preferred to combine with blood proteins, and thus induced the formation of 30–50 nm Au-protein corona. GNPs were endocytosed by cytoplasmic vesicles, localized in intracellular region, and presented concentration dependent cell viability. Clonogenic assay illustrated that the PEG-coated GNPs could sensitize two liver cancer cell lines to irradiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A systematic review of gold nanoparticles as novel cancer therapeutics

Objective(s):The current systematic study has reviewed the therapeutic potential of gold nanoparticles as nano radiosensitizers for cancer radiation therapy.   Materials and Methods: This study was done to review nano radiosensitizers. PubMed, Ovid Medline, Science Direct, SCOPUS, ISI web of knowledge, Springer databases were searched from 2000 to September 2013 to identify appropriate studies....

متن کامل

Evaluation of gold nanoparticles radio sensitization effect in radiation therapy of cancer: review article

In recent years, the use of gold nanoparticles (GNPs) in radiation therapy has been studied by experimentation and Monte Carlo simulation repeatedly. Although the idea of increasing doses has been raised by high-atomic elements since decades ago, but due to the adaptation of gold nanoparticles with the biological system, scientists have incited more about the various uses of these materials in ...

متن کامل

Gold nanoparticles in radiation therapy: an old story yet mesmerizing

Radiotherapy (RT) is generally considered to be one of the most effective cancer treatments. The primary goal of RT is to accurately induce radiation damage to the tumor while limiting radiation toxicity to a level acceptable to normal tissue. This is accomplished by targeting the tumor with radiation. On the other hand, the status of RT procedures as they stand today is not substantial enough ...

متن کامل

The effect of gold nanoparticles on dose enhancement factor of human intestinal colon cancer HT-29 cells

Introduction: Radiation therapy is an important procedure for treatment of more than half of tumors. One way to increase the efficiency of radiation therapy is application of radiosensitizer at the site of tumor. gold nanoparticles (GNPs) have several characteristics that make them attractive for using with radiation therapy including small size (1–100 nm), biocompatibility, pr...

متن کامل

Studying Effects of Gold Nanoparticle on Dose Enhancement in Megavoltage Radiation

Background: Gold nanoparticles are emerging as promising agents for cancer therapy and are being investigated as drug carriers, photothermal agents, contrast agents and radiosensitisers.Objective: The aim of this study is to understand characteristics of secondary electrons generated from interaction of gold nanoparticles GNPs with x-rays as a function of nanoparticle size and beam energy and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017